MOSFETs Overview

- Metal-oxide-semiconductor field-effect transistors (MOSFET) are the building blocks of modern VLSI circuits with the areas of applications:
 - microprocessors
 - dynamic memories
 - and so on.

- In modern VLSI circuits:
 - two types of MOSFET structures are used:
 - nMOSFETs: p-substrate with n+ source-drain
 - pMOSFETs: n-substrate with p+source-drain
 - nMOSFETs and pMOSFETs are used together and is called CMOSFETs.
A. MOSFET Device Structure

MOSFETs are four terminal devices as shown in Fig. below:

1. **Gate**: thermally grown oxide on Si-substrate with conducting electrode on the top.

2. **Source-drain**: heavily-doped regions at the two ends of the gate contacted with metal interconnects.

3. **Body**: substrate connected with metal interconnect.
Layout and Structure of VLSI CMOSFETs

NMOS

PMOS

n+ poly
Spacer
P+ poly
Gate oxide
Halo

n+ p+ n+ p+p+

STI
p-well
p-substrate

n-well

n-well

CONTACT
DIFFUSION
POLY
METAL
P—WELL
N—WELL
MOSFET Circuit Symbols

nMOSFETs

pMOSFETs

G = gate; D = drain; S = source; B = Body
B. MOS Structure - Energy Band Diagram

- Note:
 - 3 materials in contact, E_F = constant like PN junctions at equilibrium.
 - currents through SiO$_2$ are very small.
 - holes \rightarrow metal on contact.
 - e^- \rightarrow semiconductor on contact.
 - bands will bend down in silicon at the interface ($\Phi_M < \Phi_S$).
MOS Structure at Equilibrium

At equilibrium \((V = 0)\).

Note:

- Abrupt transition in \(E_c\) and \(E_v\) levels at material interfaces.

- A typical potential drop \(~ 0.6\) eV across SiO\(_2\). This depends on \(E_F\) in Si. This potential can be supported because no current flows through SiO\(_2\).

- Substantial barriers exist to current flow from:
 - \(S \rightarrow M\)
 - \(M \rightarrow S\).

- Depletion region exists near the surface because \(E_F\) near the surface is further from \(E_v\) than the bulk region.
MOS Structure - Accumulation

Applied Bias: negative voltage on Al

- E_F is still constant in the Si since SiO$_2$ prevents any current flow.
- E_F is closer to E_v at the surface.
 \therefore more holes near the surface.
 \Rightarrow ACCUMULATION.

-ve

\[E_{FM} \quad qV \quad E_c \quad E_F \quad E_v \]

Al SiO$_2$ p-Si
MOS Structure - Inversion

Applied Bias: positive voltage on Al

- E_F is still constant in the Si ($I = 0$).
- E_F is closer to E_c at the surface than it is to E_v.
- more e- than holes at the surface.

\Rightarrow INVERSION.
MOS Structure - Surface Carrier Densities

At any point in the silicon, we can calculate the hole and e-concentrations using:

\[p = n_i e^{\frac{q\phi}{kT}} \] \hspace{1cm} (1)

\[n = n_i e^{\frac{q\phi}{kT}} \] \hspace{1cm} (2)

If \(\phi_s \) = surface potential and \(\phi_p \) = bulk potential so that the potential drop across the depletion region = \((\phi_p - \phi_s) \), then, the surface concentrations are:

\[p_s = N_A e^{-\frac{q(\phi_p - \phi_s)}{kT}} \] \hspace{1cm} (3)

\[n_s = \frac{n_i^2}{N_A} e^{\frac{q(\phi_p - \phi_s)}{kT}} \] \hspace{1cm} (4)

Since we know \(\phi_p \) from the bulk doping, if we know \(\phi_s \) for a given applied \(V_G \), then we can calculate the e- and hole surface concentrations.
C. C – V Characteristics

(a) Accumulation: $V_G > 0$

Note:
- e^- are attracted to the surface.
- The small-signal capacitance per unit area is given by:
 \[C_o = \frac{\varepsilon_{ox}}{t_{ox}} \]
 where
 - ε_{ox} = dielectric constant in the oxide
 - t_{ox} = oxide thickness.
C – V Characteristics

(b) Depletion: \(V_G < 0 \)

- \(\text{e-} \) are repelled from the surface resulting in a depletion region.
- The small-signal depletion capacitance per unit area is given by:
 \[
 C_d = \frac{\varepsilon_s}{x_d}
 \]
 where,
 - \(\varepsilon_s \) = dielectric constant of silicon
 - \(x_d \) = width of the depletion layer.
- The total capacitance:
 \[
 C = \frac{C_o C_d}{C_o + C_d}
 \]
C – V Characteristics

(c) Inversion: $V_G << 0$

- Minority-carriers pile-up near the oxide-semiconductor interface.
- In strong INVERSION:
 - $x_{d_{\text{max}}} = \text{maximum width of depletion region is a constant}$,
 - $C_d = C_{d_{\text{min}}} = \text{a constant}$.
- For V_G between ACCUMULATION and strong INVERSION:
 - $x_d \propto V_G^{1/2}$.
Let us consider the condition (b) depletion, then:

\[Q = Q_G = -Q_s = -qN_D x_d \] \hspace{1cm} (5)

where,

\(x_d = \text{width of the depletion region} \)

\(N_D = \text{donor concentration/cm}^3 \).

Assuming that \(N_D \) is independent of distance (uniform substrate doping), then from Poisson’s equation we have:

\[\frac{d^2 \phi}{dx^2} = -\frac{\rho}{K_s \varepsilon_o} = -\frac{qN_D}{K_s \varepsilon_o} \] \hspace{1cm} (6)

\[\therefore \phi = \phi_s \left(1 - \frac{x}{x_d}\right)^2 = \text{Potential in silicon} \] \hspace{1cm} (7)

where \(\phi_s = \frac{qN_D x_d^2}{2K_s \varepsilon_o} = \text{Surface potential} \) \hspace{1cm} (8)
But from Gauss’ Law, the electric displacement must be constant across the Si/SiO\textsubscript{2} interface, so that:

\[K_o \varepsilon_{ox} = K_s \varepsilon_s \] \hspace{1cm} (10)

where

- \(K_o \) and \(K_s \) are dielectric constants of oxide and Si respectively
- \(\varepsilon_{ox} \) and \(\varepsilon_s \) are \(\varepsilon \)-field in oxide and in Si at the interface respectively.

Assume,

\[t_{ox} = \text{oxide thickness} \]
\[V_o = \text{potential across oxide} \]

Then, the applied voltage is given by:

\[V_G = V_o + \Phi_s \]

\[= t_{ox} \varepsilon_{ox} + \frac{q N_D x_d^2}{2 K_s \varepsilon_o} \] \hspace{1cm} (9)
C – V Characteristics

From (10) we get:
\[\varepsilon_{ox} = \varepsilon_s (K_s / K_o) \]
(11)

Also, from Gauss’ Law:
\[\varepsilon_s = -\frac{Q_s}{K_s \varepsilon_o} = -\frac{Q}{K_s \varepsilon_o} \]
(12)

\[\therefore \varepsilon_{ox} = -\frac{Q}{K_o \varepsilon_o} \]

Then, from (9) we get:
\[V_G = -Q \frac{t_{ox}}{K_o \varepsilon_o} + \frac{q N_D x_d^2}{2 K_s \varepsilon_o} \]
(13)

Using (5) we have:
\[V_G = -Q \frac{t_{ox}}{K_o \varepsilon_o} + \frac{Q^2}{2 K_s \varepsilon_o q N_D} \]
(14)
C – V Characteristics

From (14) we get:

\[Q = \frac{K_s q N_D t_{ox}}{K_o} \pm \sqrt{\left(\frac{K_s q N_D t_{ox}}{K_o} \right)^2 + 2 K_s \varepsilon_o q N_D V_G} \]

This is the amount of charge on the metal plate or in the depletion region when the depletion is taking place.

The small signal-capacitance of the structure is given by:

\[C = \frac{dQ}{dV_G} = \frac{K_s \varepsilon_o q N_D}{\sqrt{\left(\frac{K_s q N_D t_{ox}}{K_o} \right)^2 + 2 K_s \varepsilon_o q N_D V_G}} \]

\[\therefore \frac{C}{C_o} = \frac{1}{\sqrt{1 + \frac{2 K_o^2 \varepsilon_o}{q N_D K_s t_{ox}^2} V_G}} \quad (15) \]

(Here, \(C_o = K_o \varepsilon_o / t_{ox} \) = Oxide cap/area)

C – V Characteristics

During depletion, \(C \) falls as \(1/\sqrt{V} \).

However, when the surface inverts, \(C \) reaches a minimum value.

When an inversion layer forms, we have:

\[
\phi_s \cong -\phi_F \\
\chi_d \cong \chi_{d\text{ max}}
\]

\[
\phi_s (@ V_G = V_{th}) = \pm 2\frac{kT}{q} \ln \frac{N_D}{n_i}, \quad \begin{cases} + P \\ - N \end{cases}
\]
\[
\phi_F
\]

\[
\chi_d = \sqrt{\frac{2K_s \varepsilon_o}{q N_D} (2\phi_F)}
\]

\((16) \)
\((17) \)
Thus, the total band bending is “pinned” at $2\phi_F$. Further increase in $|V_G|$ results in more carriers in the inversion layer and essentially no more band bending.
At strong inversion,

- \(\phi_s = 2\phi_F \).
- The inversion layer width < 50 A.
- A higher \(\phi_s \) or \(\varepsilon \)-field tends to confine inversion charge closer to the surface.

Generally, inversion-carriers must be treated quantum-mechanically (QM) as a 2-D gas. According to QM model:

- Inversion layer carriers occupy discrete energy bands
- peak distribution is 10-30 A away from the surface.
C – V Characteristics – Threshold Voltage

When x_d reaches $x_{d_{\text{max}}}$, C reaches a minimum in the $C – V$ plot and we have:

\[C_{s_{\text{min}}} = \frac{K_s \varepsilon_o}{x_{d_{\text{max}}}} = \frac{1}{\sqrt{\frac{4kT}{q^2 K_s \varepsilon_o N_D} \ln \frac{N_D}{n_i}}} \] \hspace{1cm} (18)

The threshold voltage is defined as the gate voltage necessary to just reach the inversion (that is, $\phi_s = -\phi_F$, $x_d = x_{d_{\text{max}}}$):

\[\therefore V_{th} = 2\phi_F + V_o \]
C – V Characteristics – V_{th}

\[V_{th} = 2\phi_F + t_{ox}\varepsilon_{ox} \]

\[= 2\phi_F + t_{ox} \frac{K_s}{K_o} \int_{0}^{x_{d_{max}}} \frac{q N_D}{K_s \varepsilon_o} dx \]

[use (11) for ε_{ox} and expression for ε_s]

Now, using the expression for C_o and (17) for $x_{d_{max}}$ we get:

\[V_{th} = 2\phi_F + \sqrt{2q N_D K_s \varepsilon_o (2\phi_F)} \frac{C_o}{C} \]

(19)

In (19), we have assumed that $Q_I \approx 0$ at V_{th}.

Comparison of Ideal and the measured $C – V$ plot

![Diagram showing comparison of ideal and measured C-V characteristics](image)
C – V Characteristics – \(V_{th} \)

Actual C - V curves are shifted laterally from the theoretical curve due to:
- Work function difference between the metal and silicon
- \(Q_f \): charge at the Si/SiO\(_2\) interface.

\[
V_{th} = \phi_{MS} - q \left(\frac{Q_f}{C_o} \pm 2\phi_F \pm \sqrt{2q N_D K_s \varepsilon_o (2\phi_F)} \right)
\]

(20)

(assume \(Q_f \) is right at Si/SiO\(_2\) interface) + p-type substrate
- n-type substrate

Thus, by measuring a C - V curve for a particular process
- \(t_{ox} \) can be calculated from \(C_o \)
- \(N_D \) can be calculated from \(C_{min} \)
- \(Q_f \) can be calculated from the difference between the ideal and experimental curves.
\[C - V \text{ Characteristics} - V_{th} \]

If \(V_{\text{Sub}} \) = back bias = voltage between source and body:

- \(V_{\text{Sub}} > 0 \) for nMOSFETs
- \(V_{\text{Sub}} < 0 \) for pMOSFETs.

Then,

\[V_{th} = \phi_{MS} - q \frac{Q_f}{C_o} \pm 2\phi_F + \frac{\sqrt{2q N_D K_s \epsilon_o (2\phi_F \pm V_{\text{Sub}})}}{C_o} \quad (21) \]

\[\therefore V_{th} = V_{th0} \pm \gamma \sqrt{2\phi_F \pm V_{\text{Sub}}} - \sqrt{2|\phi_F|} \quad (22) \]

Where

\[\gamma = \frac{\sqrt{2q N_D K_s \epsilon_o}}{C_o} \equiv \text{body factor} \quad (23) \]
Low-Frequency $C - V$ Characteristics

If the frequency of the applied signal is lower ($<< 100$ Hz) than the reciprocal of the minority-carrier response time:

- Inversion charge (Q_I) is able to follow the applied signal
- Q_I varies with ϕ_s and C_s depends on Q_I.

 $\therefore C \uparrow$ as $|V_G| \uparrow$.

- At higher $|V_G|$, C increases back to C_o.
MOS Capacitors - Polysilicon Gates

At equilibrium ($V_G = 0$).

Note:

- E_F of heavily doped n+ polysilicon is near E_c which must line up with E_F of p-silicon.
- E_o of p-silicon is higher in e^- energy than that of n+ polysilicon by $E_g/2q + \phi_s$. $\therefore \varepsilon$–field is setup from n+ to p-Si.
- Band bends downward in p-silicon causing depletion region. $\therefore \varepsilon$–field from gate to substrate.
- A voltage called flat-band voltage (V_{FB}) must be applied to restore flat band condition. $V_{FB} = \Phi_{ms} - Q_{ox}/C_{ox}$.
- All the C - V curves discussed before are shifted by V_{FB}, and the V_G is:
 $$V_G = V_{FB} + \phi_s - Q_{ox}/C_{ox}.$$
MOS Capacitors - Polysilicon Depletion Effect

At Inversion ($V_G >> 0$).

Note:

- Oxide field points in the direction of accelerating negative charge, bands in n+ polysilicon bends upward.
- The surface is depleted and forms a thin space-charge region in the polysilicon layer.
- Gate depletion results in an additional capacitance in series with C_{ox}.
- Total $C \downarrow$. $\therefore Q_I \downarrow$ and $g_I \downarrow$.

\[
\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{silicon}} + \frac{1}{C_{poly}}
\]

$C_{poly} =$ Polysilicon depletion capacitance; $C_{silicon} =$ p-silicon capacitance due to Q_d and Q_I.

\[
C_{ox} \quad C_{silicon} \quad C_{poly}
\]
MOS Capacitors - Polysilicon Depletion Effect

Note:

- Capacitance at inversion, C_{inv} does not return to C_{ox}.
- C_{inv} shows a maximum value $C_{\text{max}} < C_{\text{ox}}$.
- $C_{\text{max}} \uparrow$ as the polysilicon doping concentration, $N_p \uparrow$.
- Since $N_p \uparrow \Rightarrow$ depletion \downarrow
 \[\therefore C_{\text{max}} \rightarrow C_{\text{ox}} \text{ for higher } N_p. \]

Total capacitance at strong inversion is given by:

\[\frac{1}{C} = \frac{1}{C_{\text{ox}}} + \frac{1}{C_{\text{silicon}}} + \frac{1}{C_{\text{poly}}} \]

As $V_G \uparrow$, $C_{\text{silicon}} \uparrow$ but $x_d(\text{poly}) \uparrow \Rightarrow C_{\text{poly}} \downarrow$.
 \[\therefore \text{Low frequency } C - V \text{ shows a local maximum at } V_G. \]
D. Inversion Layer Quantization

• Typically, near the silicon surface, the inversion layer charges are confined to a potential well formed by:
 – oxide barrier
 – bend Si-conduction band at the surface due to the applied gate potential, V_G.

![Diagram showing energy levels E_0, E_1, E_2, and the edge of E_C as a function of distance from the surface.]

• Due to the confinement of inversion layer e^- (in p-Si):
 – e- energy levels are grouped in discrete sub-bands of energy, E_j
 – each E_j corresponds to a quantized level for e^- motion in the normal direction.
Inversion Layer Quantization

• Due to Quantum Mechanical (QM) effect, the inversion layer concentration:
 – peaks below the SiO₂/Si interface
 – ≈ 0 at the interface determined by the boundary condition of the e-wave function.

• Solve Schrodinger and Poisson Eq self-consistently with the boundary conditions for wave function equal to:
 – 0 for x < 0 in oxide
 – 0 at x = ∞.
Impact of QM Effect on Device Performance

• At high fields, $V_{th} \uparrow$ since more band bending is required to populate the lowest sub-band, which is some energy above the bottom of E_C.

• Once the inversion layer forms below the surface, a higher V_G over-drive is required to produce a given level of inversion charge density. That is, the effective gate oxide thickness, $t_{OX}^{eff} \uparrow$ by:

$$\Delta t_{OX} = (\varepsilon_{ox}/\varepsilon_{si})\Delta z$$ \hspace{1cm} (24)

• Inversion layer quantization can be treated as $\textit{bandgap widening}$ due to an increase in the effective bandgap by ΔE_g given by:

$$n_i^{QM} = n_i^{CL} e^{\frac{\Delta E_g}{2kT}}$$ \hspace{1cm} (25)

Here, $\Delta E_g = E_g^{QM} - E_g^{CL}$.

(25) $\Rightarrow n_i \downarrow$ and $n \downarrow$ due to QM effect.
E. Short Channel Effect

For short channel devices, $V_{th} \downarrow$ as $L \downarrow$.

Many researchers have attempted to analyze this 2-D problem. We will consider only the simplest approach (by Yau) to understand the basic idea of short channel effect.

Assume:
- $V_D = 0 = V_S$
- $\phi_s = 2\phi_F$ @ $V_G = V_{th}$ and ϕ_s is unaffected by short channel effect.
- $x_d = x_{dj}$

From charge conservation:

$$Q_G + Q_{ox} + Q_I + Q_B = 0 \quad (26)$$

Also,

$$V_{th} = V_{FB} + 2\phi_F + \frac{Q_B}{C_o} \quad (27)$$

where

$$Q_B = -\sqrt{2qK_s\varepsilon_o N_A(2\phi_F + V_{Sub})} \quad (28)$$
Short Channel Effect (SCE)

From first order MOS theory:

\[x_d = \sqrt{\frac{2 K \varepsilon_o}{q N_A}} \left(2 \phi_F + V_{Sub} \right) \] \hspace{1cm} (29)

Now, let us assume that only the charge inside the trapezoid is supported by the gate, i.e. the junctions support the remaining charge. *(This implies that \(Q_B \) is smaller than the long channel device and therefore, for a given \(V_G \), \(Q_I \) is larger to maintain charge neutrality. And, \(V_{th} \uparrow \)).

The total charge in the trapezoid is:

\[Q_B' L = qN_A x_d [(L + L')/2] \] \hspace{1cm} (30)

where, \(Q_B' < Q_B \) because \(L' < L \).

\[\therefore \text{In Eq (27), } Q_B \text{ is replaced by } Q_B' \]
Short Channel Effect

From Fig. on the right, we get:

\[
\left(\frac{L - L'}{2} + r_j \right)^2 + x_d^2 = (r_j + x_d)^2
\]

or, \[
\frac{L - L'}{2} + r_j = \sqrt{(r_j + x_d)^2 - x_d^2}
\]

or, \[
\frac{L - L'}{2} = \sqrt{(r_j + 2x_d)r_j - r_j} = \sqrt{1 + \frac{2x_d}{r_j} - 1}r_j
\]

\[
\therefore \frac{L + L'}{2L} = 1 - \left\{ \sqrt{1 + \frac{2x_d}{r_j} - 1} \right\} \frac{r_j}{L}
\]

Using (29) and (31) in (30), we can show that:

\[
\dot{Q}_B = Q_B \left[1 - \left\{ \sqrt{1 + \frac{2x_d}{r_j} - 1} \right\} \frac{r_j}{L} \right]
\]
Thus, if we assume that the effect of non-uniform Q_B distribution can be averaged over L, then:

$$V_{th} = V_{FB} + 2\phi_F + \frac{Q_B}{C_o} \left[1 - \left\{ \frac{1}{1 + \frac{2x_d}{r_j}} - 1 \right\} \frac{r_j}{L} \right]$$

This is the desired result that predicts V_{th} as a function of L, r_j and x_d (or N_A) for $V_D = 0$.

Note:

1) $\Delta V_{th} \propto 1/L$.
2) As $r_j \downarrow$, $\Delta V_{th} \downarrow$, shallow junctions are preferred.
3) For large $L \uparrow$, $\Delta V_{th} \rightarrow 0$ and the long channel form applies.
4) N_A shows up in x_d and Q_B. $\therefore N_A$ affects both V_{th} and ΔV_{th}
5) V_{Sub} is included in x_d as well.
Short Channel Effect

At high V_D, the depletion region near the drain will expand. Q_B will be further reduced and V_{th} decreases. This has been analyzed by Taylor (IEEE Trans. Elec. Dev., 25, p 337, 1978).

In this case, the main change is that L_2 is allowed to reflect V_D and the region under the gate near the source and drain is now junction charge rather than gate charge (i.e. L_3 and $L_4 \neq 0$).

The added complexity of the Taylor’s model does permit “reasonable” estimation of V_D effects on V_{th}.
Reverse Short Channel Effect (RSCE)

For sub-micron devices, V_{th} is found to increase first as $L\downarrow$ and then decrease with further reduction in L.

The anomalous $V_{th} \uparrow$ as $L\downarrow$ is due to non-uniform lateral channel doping concentration caused by:

- an enhanced diffusion of channel implant induced by the damage from S-D implant.
- boron segregation to the S-D implant regions.
RSCE due to Source-Drain Processing

0.35 µm nMOSFETs

1.0 µm nMOSFETs

2-D boron channel profile after S-D processing
RSCE due to Halo Implant

- Halo implant around source-drain extensions (SDE):
 - significantly increases the channel doping concentration as $L \downarrow$
 - causes $V_{th} \uparrow$ as $L \downarrow$ (i.e. RSCE).
RSCE due to Halo Implant

- RSCE (i.e. V_{th}^{\uparrow} with L^{\downarrow}) for $L_{eff} < 200$ nm is due to halo implants around SDE.
- RSCE depends on halo doping concentration.
F. Narrow Channel Effect

In addition to channel length effects on V_{th}, small channel widths, also, affect V_{th}. These effects can be understood physically as follows:

![MOS cross-section diagram]

Figure shows the MOS cross-section along the channel width direction.

The depletion layer cannot abruptly change from deep to shallow. Therefore, the transition region and some spreading of field lines from gate outside W.

Thus, Q_G supports some charge outside W. As a result, $Q_I \downarrow$ and $V_{th} \uparrow$.
Narrow Channel Effect

Consider the uniformly doped substrate with $V_D = 0$.

$Q_{BW} = \text{triangle area charge under thick oxide that is supported by gate.}$

$Q_{BL} = \text{trapezoidal area charge supported by gate (Yau).}$

The parameter α depends on oxide thickness, shape of field oxide edge, substrate doping, field threshold adjustment implant, and so on.

It is likely that α has to be experimentally determined.
Narrow Channel Effect

The charge inside the volume is \((1/2)Q_{BW}\). The shape is rectangular on top, the sides are triangular and slope inward.

We know from SCE:

\[
Q_{BL} = qN_A LW x_d \left[1 - \left(\frac{2x_d}{r_j} \right) \frac{r_j}{L} \right] \tag{34}
\]

The charge contained in the volume above can be shown to be:

\[
Q_{BW} = \alpha qN_A LW x_d^2 \left[1 - \left(\frac{2x_d}{r_j} \right) \frac{r_j}{3L} \right] \tag{35}
\]

Now, we assume that the narrow width and short channel effects can be simply superimposed so that the total charge supported by the gate is given by:

\[
Q_T = Q_{BL} + Q_{BW}
\]
Narrow Channel Effect

The charge contained in the volume can be shown to be:

\[Q_T = Q_{BL} + Q_{BW} \]

\[= qN_A LWx_d \left[1 - \frac{r_j}{L} \left(1 + \frac{2x_d}{r_j} - 1 \right) + \frac{\alpha x_d}{W} \left(1 - \frac{2 r_j}{3 L} \left(1 + \frac{2x_d}{r_j} - 1 \right) \right) \right] \]

\[= qN_A LWx_d \left[1 + \frac{\alpha x_d}{W} - \frac{r_j}{L} \left(1 + \frac{2\alpha x_d}{3 W} \right) \left(1 + \frac{2x_d}{r_j} - 1 \right) \right] \tag{36} \]

The term in front of the brackets can be recognized as the bulk charge which would be present in a long and wide channel device so that:

\[V_{th} = \phi_{MS} - \frac{Q_f}{C_o} + 2\phi_F + \frac{Q_T}{C_o} \]

\[\therefore V_{th} = \phi_{MS} - \frac{Q_f}{C_o} + 2\phi_F + \frac{Q_B}{C_o} \left[1 + \frac{\alpha x_d}{W} - \frac{r_j}{L} \left(1 + \frac{2\alpha x_d}{3 W} \right) \left(1 + \frac{2x_d}{r_j} - 1 \right) \right] \tag{37} \]
Narrow Channel Effect

\[V_{th} = \phi_{MS} - \frac{Q_f}{C_o} + 2\phi_F + \frac{Q_B}{C_o} \left[1 + \frac{\alpha x_d}{W} - \frac{r_j}{L} \left(1 + \frac{2 \alpha x_d}{3 W} \right) \left(\sqrt{1 + \frac{2x_d}{r_j}} - 1 \right) \right] \]

(38)

where \(Q_B \) is given by: \(Q_B = -\sqrt{2qK_s\epsilon_o N_A (2\phi_F + V_{BS})} \)

Note that if \(L \) and \(W \to \infty \), the normal long channel \(V_{th} \) Eq is obtained.

Summary:

- \(L \downarrow \Rightarrow V_{th} \downarrow \)
- \(W \downarrow \Rightarrow V_{th} \uparrow \)
- \(x_d \uparrow \Rightarrow V_{th} \) more sensitive to \(L \) and \(W \) (i.e. lightly doped substrates and/or \(V_{Sub} \) increase problems).
- \(r_j \uparrow \Rightarrow V_{th} \) more sensitive to \(L \) (i.e. deep junctions undesirable).
- \(\alpha \downarrow \Rightarrow \) minimizes \(V_{th} \) variation due to narrow \(W \).