RFIC Design ELEN 376
Session 3

Instructor: Dr. Allen Sweet
April 17, 2002
General Layout Rules

• All Dimensions are in microns.
• Cap is in pF or fF, Ind is in nH, Res is in Ohms.
• Use .5 microns as the finest grid on the CAD Layout Tools.
• ALL metal lines are TRANSMISSION LINES, and must be modeled as such.
• Layout should keep all parasitic elements to a minimum value for best performance.
• Layout should keep chip area to a minimum for lowest cost.
GaAs HBT Virtual Foundry
Design Rules

• Layers and Structures
• Electrical Models
• Current Limits on Metals
• Layout Design Rules
• Design example
Cross Section of Metal and Dielectric Layers
Layer Definition

<table>
<thead>
<tr>
<th>LAYER NUMBER</th>
<th>NAME</th>
<th>COLOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CM</td>
<td>WHITE</td>
<td>COLLECTOR METAL</td>
</tr>
<tr>
<td>9</td>
<td>TFR</td>
<td>PURPLE</td>
<td>THIN FILM RESISTOR</td>
</tr>
<tr>
<td>10</td>
<td>M1</td>
<td>GREEN</td>
<td>FIRST METAL</td>
</tr>
<tr>
<td>12</td>
<td>NV</td>
<td>BLUE</td>
<td>NITRIDE VIA</td>
</tr>
<tr>
<td>13</td>
<td>M2</td>
<td>RED</td>
<td>SECOND METAL</td>
</tr>
<tr>
<td>14</td>
<td>PV</td>
<td>AQUA</td>
<td>POLYIMIDE VIA</td>
</tr>
<tr>
<td>16</td>
<td>SPV</td>
<td>YELLOW</td>
<td>SCRATCH PROTECT VIA</td>
</tr>
<tr>
<td>18</td>
<td>SV</td>
<td>RED</td>
<td>SUBSTRATE VIA</td>
</tr>
<tr>
<td>63</td>
<td>TXT</td>
<td>WHITE</td>
<td>TEXT</td>
</tr>
</tbody>
</table>
Layer Thickness

<table>
<thead>
<tr>
<th>LAYER</th>
<th>THICKNESS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>1</td>
<td>MICRONS</td>
</tr>
<tr>
<td>TFR</td>
<td>0.3</td>
<td>MICRONS</td>
</tr>
<tr>
<td>M1</td>
<td>2</td>
<td>MICRONS</td>
</tr>
<tr>
<td>NITRIDE</td>
<td>2000</td>
<td>ANGSTR</td>
</tr>
<tr>
<td>POLY</td>
<td>2</td>
<td>MICRONS</td>
</tr>
<tr>
<td>SCRATCH PROTECT</td>
<td>4</td>
<td>MICRONS</td>
</tr>
<tr>
<td>GaAs SUBSTRATE</td>
<td>100</td>
<td>MICRONS</td>
</tr>
</tbody>
</table>
Layer Resistance

<table>
<thead>
<tr>
<th>LAYER</th>
<th>RESISTANCE IN OHMS PER SQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>15</td>
</tr>
<tr>
<td>TFR</td>
<td>50</td>
</tr>
<tr>
<td>M1</td>
<td>0.02</td>
</tr>
<tr>
<td>M2</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Maximum Current Density

<table>
<thead>
<tr>
<th>LAYER</th>
<th>MAX CURRENT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>4</td>
<td>mA per micron</td>
</tr>
<tr>
<td>M1</td>
<td>4</td>
<td>mA per micron</td>
</tr>
<tr>
<td>M2</td>
<td>8</td>
<td>mA per micron</td>
</tr>
<tr>
<td>TFR</td>
<td>1</td>
<td>mA per micron</td>
</tr>
<tr>
<td>HBT Cell</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>M1 to M2 VIA</td>
<td>3</td>
<td>mA per square micron</td>
</tr>
</tbody>
</table>
Minimum Line Widths

<table>
<thead>
<tr>
<th>LAYER</th>
<th>MINIMUM WIDTH</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>4</td>
<td>microns</td>
</tr>
<tr>
<td>TFR</td>
<td>4</td>
<td>microns</td>
</tr>
<tr>
<td>M1</td>
<td>4</td>
<td>microns</td>
</tr>
<tr>
<td>NV</td>
<td>2</td>
<td>microns</td>
</tr>
<tr>
<td>M2</td>
<td>5</td>
<td>microns</td>
</tr>
<tr>
<td>PV</td>
<td>2</td>
<td>microns</td>
</tr>
<tr>
<td>SPV</td>
<td>50</td>
<td>microns</td>
</tr>
<tr>
<td>SV</td>
<td>30 in diameter</td>
<td>microns</td>
</tr>
</tbody>
</table>

NOTE: NO DONUTS ARE ALLOWED ON ANY METAL LAYER
Minimum Same Layer Line Spacing

<table>
<thead>
<tr>
<th>LAYER</th>
<th>MIN SPACING</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>2</td>
<td>microns</td>
</tr>
<tr>
<td>TFR</td>
<td>3</td>
<td>microns</td>
</tr>
<tr>
<td>M1</td>
<td>4</td>
<td>microns</td>
</tr>
<tr>
<td>NV</td>
<td>4</td>
<td>microns</td>
</tr>
<tr>
<td>M2</td>
<td>4</td>
<td>microns</td>
</tr>
<tr>
<td>PV</td>
<td>4</td>
<td>microns</td>
</tr>
<tr>
<td>SPV</td>
<td>40</td>
<td>microns</td>
</tr>
<tr>
<td>SV</td>
<td>200 edge to edge</td>
<td>microns</td>
</tr>
</tbody>
</table>
Cross Section of a Microstrip Transmission Line

[Diagram of a microstrip transmission line showing the top side metal transmission line, dielectric substrate, and backside metal ground with labels W, H, and information indicating the dimensions and components.]
Transmission Line: M1 or M2

OR

Length=L

W

M1

OR

M2
Transmission Line Cross Section

S.I. SUBSTRATE

POLY AND NITRIDE

M1

M2
ADS Model for a Transmission Line

MLIN
TL7
Subst="MSub1"
W=10.0 um
L=100.0 um
Mod=Kirschning

MSub

MSUB
MSub 1
H=4.0 mil
Er=12.5
Mu=1
Cond=4E+10
Hu=200 mil
T=2 um
TanD=.001
Rough=0 mil
Coupled Transmission Lines

Spacing = S

Width = W
Length = L

M1 or M2

M2 or M1
ADS Model for Coupled Transmission Lines

MCLIN
CLin1
Subst="MSub1"
W=10.0 um
S=5.0 um
L=100.0 um

MSub

MSUB
MSub1
H=4.0 mil
Er=12.5
Mur=1
Cond=4E+10
Hu=200 mil
T=2 um
TanD=.001
Rough=0 mil
Thin Film Resistor: TFR/M1

\[R = \left(\frac{L}{W} \right) 50 \text{ Ohms} \]
Resistor Cross Section

S.I. SUBSTRATE
ADS Model for Thin Film Resistors

MLIN
TL7
Subst="MSub1"
W=5.0 um
L=150.0 um
Mod=Kirschning

R
R9
R=700 Ohm

MSub

MSUB
MSub1
H=4.0 mil
Er=12.5
Mur=1
Cond=4E+10
Hu=200 mil
T=2 um
TanD=.001
Rough=0 mil
M1 to M2 VIA: M2/M1/PV/NV

Layer enclosure
Is .5 micron
M1 to M2 VIA Cross Section

M2

PV

POLY

M1

NV

NITRIDE

S.I. SUBSTRATE
MIM Capacitor: M1/PV/M2

C = 0.300 fF per Square micron

Layer enclosure is 0.50 micron

Normal Range Is 0.05 pF to 10 pF
Capacitor Cross Section
ADS Model for the MIM Capacitor
Substrate Via:
CM/M1/PV/NV/M2/SV

Layer enclosure
Is .50 micron
Substrate VIA Cross Section

SCRATCH PROTECT

M2

POLY

NITRIDE

PV

NV

S.I. SUBSTRATE

SUBSTRATE VIA

BACKSIDE METAL

Copy Right 2002 ELEN 376 26
Bond Pad:
CM/M1/PV/NV/M2/SPV

(100 x 100 microns)

Layer enclosure Is .50 micron
Bond Pad Cross Section

S.I. SUBSTRATE

SCRATCH PROTECT

POLY AND NITRIDE
Wafer Probe Pad Pairs

150 microns
M1, M2 Crossover

C = 0.15 fF per Square micron
ADS Model for the M1 to M2 Crossover

![Diagram of ADS Model for the M1 to M2 Crossover]
TFR, M2 Crossover

C = 0.15 fF per Square micron
ADS Model for the TFR to M2 Crossover
Spiral Inductor: M1/M2

Normal Range
Is .1 nH to 5 nH

N=1.25
ADS Spiral Inductor Model

MRIND
L3
Subst="MSub1"
N=1.25
L1=100 um
L2=100 um
W=10 um
S=10 um
Single Finger: HBT Transistor Dummy Cell Layout

Emitter Dimensions:
2 microns X
12 microns

All contacts are M1. No metal may cross over an HBT Cell. Contacts come from the side.
Single Emitter Finger HBT Transistor Gummel Poon Model

Copy Right 2002 ELEN 376
3 Emitter finger (A=3) HBT Transistor: M1/M2/ M1 to M2 VIA
Details of the Three HBT Cell Interconnections

Cell 1 Cell 2 Cell 3

Note: Butt Collectors together
Homework #2: Amplifier Layout
(HBT Transistor is A=3)
Blow up of Amplifier Circuit Elements

- R1
- R2
- HBT
 - A=3
- M1 to M2 VIAs
- Input
- Output
- Ground
Modified Amplifier Schematic
Including All Parasitic Elements
Blow up of Layout Electrical Model
ADS Simulations including Layout Parasitic Elements.